

Clarinox Technologies Pty. Ltd.

ABN 89 062 954 170
28 / 296 Bay Rd

Cheltenham VIC 3192
Tel (613) 9095 8088

www.clarinox.com

Koala EVM

Software Applications Manual

The information contained herein shall not be disclosed to unauthorized persons. This document remains the

property of Clarinox Technologies Pty Ltd. It contains proprietary and confidential information and is considered
to be a trade secret by Clarinox Technologies Pty Ltd. No information contained herein is to be shared, copied,
disclosed, or otherwise compromised in any way without the written consent of Clarinox Technologies Pty Ltd.
The contents of this document are subject to change without notice. Clarinox Technologies Pty Ltd reserves

the right to make changes in this document as progress in planning, development, engineering or manufacturing
warrants.

All Rights Reserved, Copyright Clarinox Technologies Pty Ltd © 2001-2014

Revision History

Edit Date Design Approval Description

01 13 Feb 2014 JZ GT Initial draft

02 17 July 2014 JZ GT Update formatting, additional descriptions

03 22 Jan 2015 RM JZ Additional wireless applications, included flow diagrams

Software Guide

Page 2

Table of Contents

1 Introduction .. 3

1.1 Purpose .. 3

2 Peripheral Applications .. 4

2.1 WLAN Application .. 4

2.2 BLE GATT Application ... 8

2.3 SPP Application ... 11

2.4 USART printf Demo ... 14

2.5 LCD Demo ... 14

2.6 LCD Touch Screen .. 15

2.7 Camera Demo (DCMI) ... 15

2.8 CAN Bus Demo .. 16

2.9 Ethernet and Stack .. 18

2.10 USB Host and Device .. 20

3 WMI Debugging Applications ... 21

3.1 USART Bridge ... 21

3.2 Ethernet to USART .. 21

4 Additional Information .. 22

4.1 Compiling ... 22

4.2 Application Specific Notes .. 22

4.2.1 Data Speeds ... 22

4.2.2 USB ... 22

4.2.3 Camera ... 22

4.2.4 Ethernet ... 22

4.2.5 CAN Bus ... 22

4.2.6 UART Bridge ... 22

4.3 Memory Requirements ... 22

List of Tables

Table 1: USART Project Directory ... 14
Table 2: Memory and flash requirements of each application ... 22

Software Guide

Page 3

1 Introduction
This document conveys software procedures required for the demonstration applications provided with the
Clarinox Koala EVM. These applications are designed to be used in conjunction with board peripherals attached
to the STM32F407IGT6/ STM32F429IGT6 microcontroller.

1.1 Purpose
The purpose of this document is to provide detailed specifications for software implementation required to use the
Koala EVM with on board peripherals. This is achieved by providing step by step instructions that are necessary
for the optimum functionality of the Koala EVM and on board peripherals.

Software Guide

Page 4

2 Peripheral Applications

2.1 WLAN Application

The following project demonstrates basic Wi-Fi functionality with the option of acting as an access point or a
station

1. Disable all interrupts
2. Initialise uC/OS-III
3. Create a start task with the following properties-

 Initialises Board Support Package (BSP) functions

 Initialises uC/CPU services

 Determines System tick clock frequency

 Determine number of System tick increments required and initialise uC/OS periodic clock using
this information

 Initialise LCD

 Setup GPIO pins for SRAM data lines

 Setup GPIO pins for LCD control pins

 Setup GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM,
data width: 16bit, write operation: enable, extended mode: enable, asynchronous wait:
disable)

 Write values to LCD registers and Clear the LCD to prepare for image

 Compute CPU capacity with no task running if required

 Launch main program
4. Main program responsibilities-

 Create a stack object

 Board Support Package (BSP) initialisation

 Initialise LwIP stack

 Initialise dynamic memory heap

 Initialise memory pools

 Set IP, Netmask and GW address as 0 if using DHCP. Set desired IP, Netmask and
GW otherwise (Setup network parameters such as IP address, MAC address,
Netmask and GW address in “main.h” file).

 Add network interface to the LwIP stack

 Register default network interface

 Initialise console UI engine with option tree to allow user to interact with program
5. Main Program capabilities-

 Enable Wi-Fi stack

 Initialise WLAN stack

 Bind WLAN stack to physical WLAN interface

 Create a single virtual interface and get an handle that will start, stop and control the
interface

 Option to activate Access point feature

 Initialise parent list object that holds all other configuration objects

 Implement SDIO interface in the Board Support Package (BSP)

 Initialise WL18xx firmware binary

 Determine maximum transmission power used by WL18xx hardware (in dB)

 Set frames to be captured as all frames except for beacons

 Access point options-
1. Start interface with default configuration- initialise configuration array objects

of supported data rates, establish SSID and start virtual interface operation
that provides service using given WLAN interface. Display MAC address if
virtual interface has successfully started. Default configuration-

a. Frequency Bandwidth: 2.4 GHz
b. Channel: 6
c. Hidden SSID: 0
d. Channel Type: No_HT
e. Beacon Interval: 300
f. Maximum number of stations: 8
g. Encryption passkey: Secure string determined by user

h. Encryption Protocol: Temporal key integrity protocol
i. Inactivity timeout: 300 (seconds)

Software Guide

Page 5

2. Start interface with custom configuration- Provide option to alter the following
parameters with appropriate UI (start virtual interface operation after
configuring following parameters)-

a. Supported rates: choice of IEEE 802.11abg, IEEE 802.11n, IEEE
802.11b or IEEE 802.11g

b. Authentication: Open system authentication (OSA), WEP, TKIP,
CCMP or TKIP+CCMP

c. Channel
d. SSID broadcast: option to disable/enable SSID broadcast

3. Enable Device- configure and set client inactivity timeout (3000 seconds) and
then start WLAN role associated with the respective interface (RF transceiver
powered on and stack informs network interface about activation of the link) .

4. Disable Device- Stop WLAN role associated with the respective interface by
removing all client stations connected, powering off RF transceiver and
informing network interface that the link is down

5. Get current configuration of Access point- list SSID, passkey,
hidden/broadcast SSID, channel and encryption protocol

6. Get list of joint stations- provide a list of joint stations along with the
respective MAC addresses

7. Get Maximum rate for a joint client
8. Stop interface

 Option to activate Station Mode

 Initialise parent list object that holds all other configuration objects

 Recommended values by driver-
1. Maximum transmitter power: 15 dB
2. Maximum size of MAC frames: 2352
3. Request to send (RTS)/ Clear to send (CTS) threshold: 2353
4. Wireless protected setup: Disable

 Set frames to be captured as all frames except for beacons

 Initialise configuration array object to hold list of supported data rates

 Identify name of SDIO driver

 Initialise WL18xx firmware binary

 Station mode features-
1. Start interface-

a. Enable WL18xx hardware first
b. Initiate bus driver and prepare for communication with WLAN

controller
c. Boot controller
d. Load firmware onto controller
e. Set initial configuration parameters
f. Enable request role in controller
g. Acknowledge successful setup of virtual interface by printing MAC

address onto LCD screen
h. Determine and list firmware version of WL18xx controller
i. Initialise channels for scan procedures (ensure local regulatory

domain is adhered to)
j. Send list of channels to WLAN stack

2. Scan-
a. Scan for Access Points (AP) and repeat this process based on user

preference (recommended repetitions: 1). Scan for all available
networks in the area (that are operating on the specified channels)
rather than specific SSID

b. Provide the list of networks found (Basic Service Sets)
3. Scan for a specific SSID-

a. Request for specific SSID
b. Perform WLAN scan for all available Basic Service Sets (BSS)
c. Match SSID with list of BSS and output result

4. Connect to wireless network
a. Request for SSID to connect to
b. Connection mode: Associate (no prior connection with BSS is

assumed)
c. Authentication type: Pre-shared master key
d. Provide options for encryption protocols: No encryption, WPA or

WPA2
e. Pass encryption protocol to security credential of wireless network
f. Encryption related parameters initialisation value: 0

Software Guide

Page 6

g. Request encryption passkey/master key
h. Connect to network based on connection profile provided (and print

result)
5. Disconnect from wireless network- by sending de-authentication and de-

association frames to access point
6. Probe the access point-

a. Destination of probe request: broadcast address
b. Maximum number of probe request: 5
c. Time interval between consecutive probe requests: 1 beacon

interval
d. Print BSS information if successful

7. Stop interface- terminate virtual interface and disable WL18xx hardware

 Option to activate P2P mode
1

 Option to provide statistics

 Initialise parameters (Maximum transmission rate, maximum kink transmission rate
and current transmission rate) to the value 0.

 Retrieve and print parameter results using driver parameter interrogator

 Option to disable Wi-Fi stack

 Virtual interfaces that have been started must first be stopped before disabling Wi-Fi
stack

1. Terminate virtual interface
2. Disable WL18xx hardware
3. Close service handle
4. Empty joint station list

 Terminate WLAN stack-
1. Phase 1-

a. clean up stack by disconnecting from remote services and dismiss
internal tasks and state machines

b. Provide indication of successful clean up to allow process to
proceed to phase 2 (i.e. release semaphore as function has access
to shared resource)

c. Release semaphore
2. Phase 2-

a. Wait for semaphore from Phase 1
b. Delete objects, threads and timers
c. Release all memory used by the stack

3. Print result

1
 Coming soon

Software Guide

Page 7

Figure 1: WLAN Application

Software Guide

Page 8

2.2 BLE GATT Application

The subsequent application demonstrates basic Bluetooth Low Energy functionality using the General Attribute
Profile (GATT)

1. Disable all interrupts
2. Initialise uC/OS-III
3. Create a start task with the following properties-

 Initialises Board Support Package (BSP) functions

 Initialises uC/CPU services

 Determines System tick clock frequency

 Determine number of System tick increments required and initialise uC/OS periodic clock using
this information

 Initialise LCD

 Setup GPIO pins for SRAM data lines

 Setup GPIO pins for LCD control pins

 Setup GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM,
data width: 16bit, write operation: enable, extended mode: enable, asynchronous wait:
disable)

 Write values to LCD registers and Clear the LCD to prepare for image

 Compute CPU capacity with no task running if required

 Launch main program
4. Main Program responsibilities-

 Initialise BSP at applications level
2

 Assign user printf and scanf functions for overloading

 Setup call-back function that is called during the initialisation of Bluetooth stack. This
function is used to reset Bluetooth controller and download the firmware onto the
controller using vendor specific HCI commands.

 Initialise user interface engine and start menu to perform required operations based on user
input

 Determine input keyboard buffer size (recommended- 128)
5. Main program capabilities-

 Initialise Bluetooth stack with parameters, event call-back functions, stack message handler
and user exception handlers

 Initialise parent list object that holds all other configuration objects
1. Transport type: UART (H4)
2. COM Port name: BLUETOOTH_PORT
3. COM Port Speed: 115200
4. Maximum number of paired devices: 4
5. Logic Link Control and Adaptation (L2CAP) outgoing buffer size: 512
6. L2CAP incoming buffer size: 512
7. L2CAP signal channel input container size: 256
8. L2CAP signal channel output container size: 256
9. L2CAP Maximum number of stack wide L2CAP connections: 8
10. L2CAP Signal channel Maximum Transmission Unit (MTU): 190
11. ATT channel Input container size: 512
12. ATT channel Output container size: 512
13. ATT channel maximum MTU: 300
14. ATT channel queued writes container size: 1024
15. HCI Driver incoming buffer size: 4096
16. HCI maximum number of outgoing commands in queue:5
17. RFCOMM incoming queue size: 512
18. RFCOMM outgoing queue size: 512
19. RFCOMM maximum number of L2CAP connections: 2
20. RFCOMM incoming MTU: 380
21. RFCOMM maximum outgoing data size: 380
22. SDP maximum number of L2CAP connections: 4
23. SDP incoming MTU: 48

 Configure generic parameters
1. Support secure simple pairing: True
2. Enable link level authentication: False
3. I/O capabilities: Local device capable of displaying 6-digit decimal number

and allows user to provide YES/NO response to request
4. Link request timeout: 1600

2
 Investigate

Software Guide

Page 9

5. Major class of device: Headset, Speaker, Stereo, Video display and VCR
6. Minor class of device: Car audio
7. Service classes-

a. Limited discoverable mode
b. Positioning: location identification
c. Networking: LAN, ad hoc
d. Rendering: printing and speaker
e. Capturing: scanner and microphone
f. Object transfer: v_Inbox and v_Folder
g. Audio: Speaker, microphone and headset service
h. Telephone: Cordless telephony, modem and headset service
i. Information: WEB server and WAP server

 Initiates Bluetooth stack based on parameters defined and output result of operation

 Release configuration parameters

 Create a semaphores and initialise it (initial value: 0)

 Start advertising

 Set address of Bluetooth device used (type: Public- universally unique)

 Make local device discoverable/connectable (start advertising) with the following
settings-

1. Minimum advertising interval: 3000
2. Maximum advertising interval: 4000
3. Advertising type: connectable by anyone
4. Address Type: Public (universally unique)
5. Direct address (previously defined)
6. Advertising Filter policy: Scan and advertise connectable by anyone
7. Advertising data length: 32
8. Advertising data byte: length of assigned name + 2
9. Block type: False

 Create a GATT profile with the following parameters:
1. Server: True
2. Create handle to instance of GATT profile used on server device with device

appearance set as generic display and stack message handler provided
3. Register a local service for the given Bluetooth Low energy GATT server

 Stop Advertising- make device non-discoverable and non-connectable (block type: false)

 Start scanning

 Create a GATT profile with the following parameters:
1. Server: False
2. Create handle to instance of GATT profile used on the client device with

device appearance set as unknown and stack message handler provided

 Start scanning with the following settings:
1. BLE scan type: Passive
2. BLE scan interval time between scans:100
3. BLE scan window duration: 80
4. Use whitelist: False
5. Block Type: False

 Stop Scanning- by stopping any ongoing operation initiated when user requested device to
start scanning (block type: False)

 Write Local Characteristics- available to clients of this service when client notification/indication
feature is set

 Request characteristics handle index from user

 Request text value for characteristic index

 Initialise value of characteristic handle index by writing into a local characteristics
value (block mode: True)

 Read Local Characteristics- application reads characteristics value with writeable attribute

 Request characteristics handle from user

 Read from local characteristics value corresponding to user input

 Print message

 Delete oldest pairing information- delete pairing information of a specific paired remote device
including bonded device (block mode: True).

 Delete all pairing information- delete pairing information of all paired remote devices including
bonded devices (block mode: True).

 Disconnect from paired device

 Terminate Bluetooth stack

Software Guide

Page 10

 Phase 1: cleaning up stack by disconnecting from remote services and return an
indication of the result to the GAP call-back function (ensure all open handles
belonging to the instance of the stack are closed prior to executing this phase)

 Acquire termination semaphore

 Delete termination semaphore

 Phase 2:
1. Delete objects, threads and timers
2. Release all memory used by the stack

Figure 2: BLE GATT Application

Software Guide

Page 11

2.3 SPP Application

The succeeding application presents basic Bluetooth classic functionality using the Serial Port Profile (SPP)

1. Disable all interrupts
2. Initialise uC/OS-III
3. Create a start task with the following properties-

 Initialises Board Support Package (BSP) functions

 Initialises uC/CPU services

 Determines System tick clock frequency

 Determine number of System tick increments required and initialise uC/OS periodic clock using
this information

 Initialise LCD

 Setup GPIO pins for SRAM data lines

 Setup GPIO pins for LCD control pins

 Setup GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM,
data width: 16bit, write operation: enable, extended mode: enable, asynchronous wait:
disable)

 Write values to LCD registers and Clear the LCD to prepare for image

 Compute CPU capacity with no task running if required

 Launch main program
4. Main Program responsibilities-

 Initialise BSP at applications level

 Assign user printf and scanf functions for overloading

 Setup call-back function that is called during the initialisation of Bluetooth stack. This
function is used to reset Bluetooth controller and download the firmware onto the
controller using vendor specific HCI commands.

 Set device parameters used for advertising during an inquiry process

 Major class of device: Desktop, Notebook, PDA and Organisers

 Minor class of device: Desktop workstation

 Service classes: v_Inbox and v_Folder

 Enable link level authentication: False

 I/O capabilities: Local device capable of displaying 6-digit decimal number and allows
user to provide YES/NO response to request

 Support secure simple pairing: True

 Link request (paging) timeout: 60000

 Initialise user interface engine and start menu to perform required operations based on user
input

5. Main Program capabilities-

 Initialise Bluetooth stack with parameters event call-back functions, stack message handler and
the exception handler

 Call-back in user thread- False

 Block type: True

 Create semaphores for connection and termination with initial value= 0 for both

 Print result

 Make device discoverable

 Set device into discoverable mode (block mode: True)

 Set device into connectable mode (block mode: True)

 Print result

 Make device non-discoverable

 Set device into non-discoverable mode (block mode: False)

 Print result

 Search for devices in proximity and pair with selected device

 Create SPP profile
1. Role: Client
2. Create a SPP handle with the following characteristics:

a. Universal unique identifier: NULL (standard Bluetooth SPP
identifier)

b. Security requirement: Medium
c. Provide a call-back function pointer

 Start Inquiry process
1. Filtering: no filtering performed
2. Mode: General Inquiry mode
3. Start Inquiry from local device

a. Search for Bluetooth devices in vicinity

Software Guide

Page 12

b. Send indication through the call-back function if a Bluetooth device
in the vicinity is found

c. Perform name request for each new device not already on the
pairing list

4. Wait until a given number of devices are discovered or until a user prompt is
entered

5. Stop inquiry to ensure Bluetooth radio is fully available for data transmission
6. List name of devices found along with universally unique Bluetooth address,

application assigned device ID, combination of generic services supported by
device, major/minor class of device and RSSI value obtained by remote
device during device discovery process

 Pair devices
1. Request user for device to pair with for the list
2. Initiate bonding procedure with remote device
3. Ensure both local and remote devices are in bondable mode
4. Perform pairing by storing pairing information in a local storage area

 Wait for incoming connection request

 Create SPP profile
1. Role: Server
2. Create a SPP handle with the following characteristics:

a. Universal unique identifier: NULL (standard Bluetooth SPP
identifier)

b. Security requirement: Medium
c. Provide a call-back function pointer

 Set Device into discoverable mode (block mode: True)

 Wait for connection (by acquiring a connection semaphore)

 Connect to a paired Device

 Create SPP profile
1. Role: Client
2. Create a SPP handle with the following characteristics:

a. Universal unique identifier: NULL (standard Bluetooth SPP
identifier)

b. Security requirement: Medium
c. Provide a call-back function pointer

 Print a list of paired devices along with their details

 Request the user for the device to connect to

 Connected device options-
1. Connect to SPP1

a. Discover COM ports on the remote device
b. Connect to a port if a suitable SDP port is found using parameters

retrieved via SDP operation. Set device into non-connectible and
non-discoverable mode

c. Start receiving data from remote client (receiver buffer size:333
2. Send Text

a. Request user for data to transmit
b. Write data onto a buffer
c. Start sending data to remote server

3. Disconnect from SPP1 (disconnect from remote virtual serial connection)
4. Hard Reset- perform procedure from “Wait for incoming connection request”

in main function

 Delete oldest pairing information- delete pairing information of a specific paired remote device
including bonded device information from persistent storage (block mode: True).

 Delete all pairing information- delete pairing information of all paired remote devices including
bonded devices information from persistent storage (block mode: True).

 Terminate Bluetooth stack

 Delete SPP profile handle as there is no user for this profile any longer (close SPP
handle)

 Phase 1: cleaning up stack by disconnecting from remote services and return an
indication of the result to the GAP call-back function (ensure all open handles
belonging to the instance of the stack are closed prior to executing this phase)

 Acquire termination semaphore

 Delete termination semaphore

 Delete connection semaphore

 Phase 2:
1. Delete objects, threads and timers
2. Release all memory used by the stack

Software Guide

Page 13

Figure 3: SPP Application

Software Guide

Page 14

2.4 USART printf Demo

This application achieves Serial communication over the USART to USB Bridge

1. Configure the USART

 Setup GPIO pins to connect USART to USB bridge

 Enable GPIO Clock

 Setup USART peripheral (typical settings: 921600 baud, 8
Bits, One Stop Bit, No parity, No flow control receive and
transmit enabled)

 Enable USART
2. Print a message to the terminal to confirm setup

 Redirect printf output to USART transmit

 Write each character of the message to the USART

 Wait until transmission finishes
3. Check if a character is received; If no character is received, keep

checking until a character is received
4. When a character is received, read the character and repeat step 5 to

display the character back on terminal
5. Return to step 3

Table 1: USART Project Directory

Type File Description

Source Files system_stm32f4xx.c STM32F4xx System clock
configuration file

stm32f4xx_it.c Interrupt handlers
main.c Main program

Header Files stm32f4xx_conf.h Library configuration file
stm32f4xx_it.h Interrupt handlers header file
main.h Main program header file

2.5 LCD Demo

This application displays a Clarinox logo on the LCD screen

1. Initialise System Tick timer and the corresponding interrupt
2. Initialise LCD

 Setup GPIO pins SRAM data lines

 Setup GPIO pins for LCD control pins

 Setup GPIO pins for FSMC interface (FSMC configuration–
memory type: SRAM, data width: 16bit, write operation: enable,
extended mode: enable, asynchronous wait: disable)

3. Write values to LCD registers and Clear the LCD to prepare for image
4. Set LCD screen window and resolution along with text settings (font and

colour)
5. Write main content onto LCD (BMP image data constituting the Clarinox

logo) along with header and footer

Figure 4- USART printf

Figure 5: LCD Demo

Software Guide

Page 15

2.6 LCD Touch Screen

Precise coordinates of contact on LCD touch screen are determined
and displayed back on the LCD screen by the following application

1. Initialise System Tick timer and corresponding interrupt
2. Initialise LCD

 Setup GPIO pins for SRAM data lines

 Setup GPIO pins for LCD control pins

 Setup GPIO pins for FSMC interface (FSMC
configuration– memory type: SRAM, data width:
16bit, write operation: enable, extended mode:
enable, asynchronous wait: disable)

 Write values to LCD registers and Clear the LCD to
prepare for image

3. Configure SPI, to read from touch sensor
4. Calibrate touch screen

1. Ask user to touch 3 points with known coordinates
2. Record read values
3. Generate calibration matrix

5. Wait until touch detected
1. Read coordinates in samples of 20 and take

average, apply calibration matrix
2. Draw dot to represent coordinates point of contact

2.7 Camera Demo (DCMI)

This example demonstrates interfacing an OV9655 camera over the DCMI and using it to capture images
which are displayed on an LCD

1. Camera Clock Setup

 Configure phase lock loop (PLL) clock by disabling default clock configuration

 Set up GPIO pin for MCO1

 Use PLL to generate output clock to this pin

 Re-enable system clock using PLL
2. Initialise System Tick timer and corresponding interrupt
3. Initialise LCD

 Set up GPIO pins for LCD control pins

 Set up GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM, data width:
16bit, write operation: enable, extended mode: enable, asynchronous wait: disable)

 Write values to LCD registers and Clear the LCD to prepare for image
4. Camera configuration

 Initialize DCMI interface using GPIO pins for I2C

 Read manufacturers ID from camera using I2C

 Select image format (e.g. QVGA, JPEG, etc.)

 Configure DCMI- capture mode: continuous, Synchronisation mode: hardware, PCK polarity:
high, HS/VS polarity: high, capture rate: capture all frames, data width: 8bit)

 Configure DMA2 to transfer data from DCMI

 Enable DMA2 clock

 Stream:1, Channel:1

 Peripheral base address: DCMI address

 Memory base address: Image buffer address (FMSC)

 Data transfer: Peripheral to memory

Figure 6: LCD Touch

Software Guide

Page 16

 Buffer size: 9600 for formats other than
JPEG (3000 for JPEG)

 Incrementing peripheral address
memory: Disable

 Incrementing memory address register:
Enable

 Peripheral data width: word, Memory
data width: half word

 DMA mode: circular

 FIFO- enabled, threshold: full

 Memory burst: single, Peripheral burst:
Single

 Configure DMA 2 interrupt request
(IRQ) channel

 Enable DMA2 stream 1 and DCMI interface
passed on image format

 Enable and configure interrupts relating to
DCMI: end of frame, overflow and error
interrupts

 Write camera registers for selected image
format using I2C

 This Example used BMP_QQVGA
(160x120 rgb565)

 Enable the DCMI
5. Capture images

 DCMI capture enable

 Set LCD screen window and resolution

 Wait for image buffer array to fill from DMA

 Scan through each element of array and write
value to LCD at designated pixel

 Draw each row until image is complete
using LCD coordinates

 Each pixel is displayed on four adjacent pictures on LCD screen to fill screen

 Clear DMA and DCMI flags and wait for next frame

2.8 CAN Bus Demo

This application demonstrates transmitting a character over CAN and receiving it on another board

1. Set up interrupts for CAN received (NVIC configuration)
2. CAN Configuration

 Set up CAN RX and TX GPIO pins

 Set up CAN parameters

 Enable CAN clock

 Initialise CAN register

 Trigger communication mode: Disable

 Automatic bus-off management: Disable

 Automatic wake up mode: Disable

 Non-automatic retransmission mode: Disable

 Receive FIFO locked mode: Disable

 Transmit FIFO priority: Disable

 CAN operating mode: Normal

 Length of time quantum: 15

 Time quanta allowed: 1

 Time quanta in bit segment 1: 13

 Time quanta in bit segment 2: 2

 Initialise CAN structure using 125KHz baud

 Initialise Can Filter

 Mode: ID mask

 Scale: 32 bit

 High: 0x0000, Low: 0x0000

Figure 7: Camera Demo

Software Guide

Page 17

 Mask ID High: 0x0000, Mask ID Low: 0x0000

 FIFO assignment: 0

 Filter activation: Enable

 Prepare Transmit structure

 Standard Identifier: 0x321

 Extended Identifier: 0x01

 Identifier message: Standard

 Message frame: Data

 Frame Length: 1

 Enable message pending interrupt
3. Initialise LCD

 Set up GPIO pins for LCD control pins

 Set up GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM, data width:
16bit, write operation: enable, extended mode: enable, asynchronous wait: disable)

 Write values to LCD registers and Clear the LCD to prepare for image
4. Transmit a message to the bus if Sender (e.g. message- CAN)
5. Interrupt Service Routine when a message is received

 Check message ID and put into a buffer

 Read message from buffer and display message on the LCD

 Send an arbitrary reply acknowledging message (e.g. Reply)

Figure 8: CAN Bus Demo

Software Guide

Page 18

2.9 Ethernet and Stack

This example is based on the IAP example from STMicroelectronics, but has been configured to run on the
EVM board. This program demonstrates connection to an Ethernet network and running TCP/IP using the
LWIP protocol stack.

1. Initialise LCD

 Set up GPIO pins for LCD control pins

 Set up GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM, data width:
16bit, write operation: enable, extended mode: enable, asynchronous wait: disable)

 Write values to LCD registers and Clear the LCD to prepare for image
2. Configure Ethernet using board support package (BSP)

 Configure network settings (e.g. IP address, MAC, Gateway, etc.) in the “main.h” file if required

 Configure GPIO ports for Ethernet pins

 Configure Ethernet MAC/DMA

 Enable Ethernet clock

 Reset Ethernet on AHB bus and perform a software reset

 Ethernet parameters (MAC):
1. Auto Negotiation: Disable
2. Speed: 10M
3. Mode: Full Duplex
4. Loopback mode: Disable
5. Retry transmission: Disable
6. Automatic MAC Pad/CRC stripping: Disable
7. Receive all: Disable
8. Broadcast frame reception: Enable
9. Promiscuous mode: Disable
10. Multicast frames filter: Perfect
11. Unicast frames filter: Perfect
12. Checksum Offload: Enabled if checksum by hardware is true

 Ethernet parameters (DMA):
1. Drop TCP/IP checksum error frame: Enable
2. Receive, store and forward mode: Enable
3. Transmit, store and forward mode: Enable
4. Forward error frames: Disable
5. Forward undersized good frames: Disable
6. Second frame operate: Enable
7. Address aligned beats : Enable
8. Fixed burst: Enable
9. Receiver DMA burst length: 32 beats
10. Transmitter DMA burst length: 32 beats
11. DMA arbitration: Round robin receiver/transmitter 2-1

3

 Configure Physical Layer to generate an interrupt on change of link status

 Read MICR register

 Enable output interrupt events to signal

 Read MISR register

 Enable interrupt on change of link status

 Configure EXTI
4
 for Ethernet link status

 Enable INT clock

 Configure INT pin as a GPIO input pint

 Connect EXTI line to INT pin

 Configure EXTI line
1. Line: Enable
2. Mode: Interrupt
3. Trigger: Falling
4. Line command: Enable

 Enable and set the EXTI interrupt as the highest priority

 Configure system clock source as HCLK (processor clock)

 Setup System tick to provide interrupt every 10 millisecond
3. Initialise LwIP stack

 Initialise dynamic memory heap

 Initialise memory pools

3
 Check for precise definition of rxtx_1_2

4
 Check for full forms of EXTI and INT

Software Guide

Page 19

 Set IP, Netmask and Gateway address as 0 if using DHCP. Set desired IP, Netmask and
Gateway otherwise.

 Add network interface to the LwIP stack

 Register default network interface

 Activate the interface, allowing it to be available for processing traffic
4. If using HTTP, initialise web server module. If using TFTP server, initialise TFTP server

5

 Web server module initialisation

 Create new protocol control block (PCB)

 Bind HTTP traffic to PCB

 Start listening on PCB port (port 80)

 Define call-back function for TCP connection setup
5. Check if any packet received (in a polling loop)

 If the process received an Ethernet packet, read the received packet from the Ethernet buffers
and send it to the LwIP packet handler

 Determine type of packet and forward it to the appropriate function to process it
6. Periodic tasks (if no packet, run these tasks)

 Run TCP timer after a discrete interval

 Run ARP update after a discrete interval

 Run DHCP process after a discrete interval

 Run DHCP coarse process after a discrete interval

5
 No reference for this present in code

Figure 9: Ethernet and Stack

Software Guide

Page 20

2.10 USB Host and Device

USB Device program simulates a Human interface device (HID) mouse and moves the cursor on a computer
screen in response to detection of touch on LCD screen.

1. Initialise System Tick timer and corresponding interrupt
2. Initialise LCD

 Set up GPIO pins for LCD control pins

 Set up GPIO pins for FSMC interface (FSMC configuration– memory type: SRAM, data width:
16bit, write operation: enable, extended mode: enable, asynchronous wait: disable)

 Write values to LCD registers and Clear the LCD to prepare for image

 Display instructions on screen
3. Initialise device stack and load the class driver

 Initialise hardware

 USB OTG is used in Full Speed (FS) mode

 Setup GPIO pins
1. Speed: 100MHz
2. Mode: Alternate function mode
3. Operating output type: push/pull
4. Operating pull-up/ pull down: no

 Enable OTG peripheral clock

 Initialise delay unit using a separate timer interrupt

 Re-initialise device library

 Register class and user call-backs

 Setup USB OTG core parameters

 Initialise core register addresses

 Initialise core

 Force mode to Device Mode

 Initialise device

 Enable USB global interrupt

 After initialisation, call user call-back

 Configure USB global interrupt
4. Wait for touch input and perform interrupt service routine

Figure 10: USB Host and Device

Software Guide

Page 21

3 WMI Debugging Applications
Since separate WMI modules include their own microcontroller, they can be programmed independently and the
EVM board can be configured as a bridge between the module and external devices. This would allow access to
serial (USART) information from the WMI module over USB or Ethernet.

3.1 USART Bridge

This application sends characters from the WMI module to the STM32F429/ STM32F407 for retransmission to
the USB serial port.

1. The software procedures for this project are similar to USART printf demo application with the exception
of characters received from USART3/USART2 will be sent to USART1 and vice versa

2. The application is available in two modes:

 Interrupt mode

 DMA modes

3.2 Ethernet to USART

The following program listens for data received over the Ethernet socket and writes it on to the USART peripheral
in single characters. In addition it can send characters form the WMI module to the network interface to make
them available to read on another device

1. Configure USART
2. The remaining software procedures for this project are similar to Ethernet and stack demo application

with the exception of HTTP server and LCD interface being absent

Software Guide

Page 22

4 Additional Information

4.1 Compiling

 When compiling the provided applications with Keil MDK, the “--c99” flag must be set in compiler
options.

 For stability and performance reasons, IAR is recommended over Keil MDK

 Each application has configurations for both variants of the Koala EVM (STM32F407IG and
STM32F429II); this can be selected in the project file before building.

4.2 Application Specific Notes

4.2.1 Data Speeds
 Baud rate generation may depend on system clock configuration

 For application stability, It is recommended not to exceed specified data transfer rates

4.2.2 USB
 USB application may sometimes require full erase of microcontroller chip before programming. This can

be achieved through the STM32 ST-Link Utility

 Due to differences in formats of binary flash files, it is best to confirm operation of the USB Host with a
USB analyser

 USB micro adapter may be required for some devices when using USB host mode

4.2.3 Camera
 Large resolution image capture may not be possible due to memory constraint and lack of compression

in supported camera OV9655

 Some camera variants require a clock signal (XCLK). The microcontroller’s PLL and MCO can be used
for this purpose. In addition, a 24MHz clock has been provided for this purpose aswell.

4.2.4 Ethernet
 By default the application is configured with a static IP address. DHCP and network settings can be

configured in the “main.h” header file.

4.2.5 CAN Bus
 High and low signal lines must be matched on each device and connected via on board screw terminals

 Line termination is required for high speed or long distance operation.

4.2.6 UART Bridge
 PC may require a software driver for the USB-UART peripheral

 Observe jumper configuration if using USART2 for WMI modules.

See readme files of each application for further details.

4.3 Memory Requirements

The table below provides approximate memory and flash usage of the applications

Name Binary (KB) Memory (bytes)

LCD 23 24308

CAN (receive) 17 19104

CAN (send) 14 15436

DCMI 24 64873

LCD Touch 25 27160

USART printf 6 7681

Ethernet stack 41 64769

USB device 12 14689

USB HOST (FW demo) 19 64815

USART bridge* 4 4294

USART to Eth* 34 68881

Table 2: Memory and flash requirements of each application

*Details current as of 10/2/2014, actual requirements may change.

