
Working across Multiple Embedded Platforms

Embedded systems are those computer systems that do not look like computer systems to
the everyday user. They are the hidden computer systems that form a part of a larger
system or product, part of anything from toys to trucks, from mobile phones to medical
devices.

In fact more microprocessors around the globe are used in embedded systems rather than
in PCs. Those already large numbers are increasing at a phenomenal rate as the devices
that surround us in our everyday lives become smarter. A consequence of an insatiable
drive towards having control over devices and access to data anywhere, anytime.
Needless to say we prefer them connected - wired or wireless.

Traditionally the requirements placed upon embedded systems are quite different to those
applied for desktop computing. Because embedded systems are in general designed to
accomplish a very specific task or group of tasks there is no single characterization that
applies to the whole gamut of embedded systems. However some combination of the
variables of robustness, small size and weight, real-time requirements, long life cycle and
low price could be expected to figure in the design criteria for most embedded systems.

Less tolerance for malfunctions in some cases may be simply a convenience and cost
issue, such as the lack of permanent I/O connections which makes debugging more
difficult, or it can far more serious such as the failure a mission critical component which
could have extreme consequences.

Real time requirements combine the constraint of time and correctness - not only does the
computation need to be correct but it also needs to be at the correct time. This requires an
estimate of the worst case performance, which on complicated architectures can be
difficult, and leads to overly conservative estimates. Mission Critical systems as a class
have a significant requirement for real time operation in order to meet external I/O and
control stability requirements.

Low price translates to reduced resources such as processor speed and memory size
which in turn constrains software development and execution. Often embedded devices
are very sensitive to cost. A variation of even a few cents per device can be significant
due to the huge multiplier of production quantity combined with the higher percentage of
total system cost it represents.

These constraints though difficult, were manageable, if the application is simple and
small enough to and run without the need of an underlying operating system.

This changes once there is a need to manage many variables such as serial, USB, TCP/IP,
Bluetooth, Wireles LAN, trunk radio, multiple channels, data and voice, enhanced
graphics, multiple states, multiple threads, numerous wait states and so on.

Continuing to use the traditional approach to the modern complex designs can become
chaotic and ad hoc – and require very experienced personnel. Complexity can increase to
the point where it becomes inefficient not to have an operating system to handle various
tasks on behalf of the application. This brings in its own issues: Embedded-system
developers must select an operating system platform prior to starting to their application
development process. Which one do you chose? The timing of this decision forces
developers to choose the embedded operating system for their device based upon current
requirements and so locking in their future options to a large extent. What happens if
your requirements change and the chosen platform does not support the new requirement?
What happens if a major client requests you change to another platform?

One way to deal with a requirement for multiple platforms is to deploy multiple teams of
personnel experiences on a particular platform. Often developers are very familiar and
experienced in one environment or one group of related environments only. If there is a
need to offer the application embedded Linux / WindowsCe and a proprietary RTOS then
three teams and three parallel developments may be required. Alternatively the
development may occur in series with an experienced team being required to port to the
various platforms in series.

Unfortunately there is no one-size-fits-all solution to such issues; however there are some
basic principles and general solutions that can assist the process of building reliable
portable embedded systems applications on time and on budget; guidelines and products
that help the design of well integrated code and tools to help deal with debugging the
inevitable issues that occur.

Some of these solutions can be obtained by various books and courses and other from
development tools and environments. Several framework environment tools exist but
usually are specific to a very limited platform set such as Linux and embedded Linux and
so on. SoftFrame, from Clarinox Technologies however, provides an infrastructure that
reduces the cost and improves the efficiency of embedded systems application
development across many platforms. Develop and debug on Windows, and run, for
example, on Intel Bulverde processor with embedded Linux or StongArm processor with
WindowsCE. A visual representation of SoftFrame is in Figure 1.

SoftFrame provides the tools and the environment to get embedded systems applications
design and development under control. There are no detailed formal methodologies to
master; and most designers are up and running within hours.

The product provides the entire necessary infrastructure for the embedded software
engineer to develop without the need to know the real-time operating system (using
Microsoft Visual Studio C++, embedded Visual C++ or GNU tools as appropriate).
Prototyping and simulations can be done, without the need for hardware, on a PC.

The OS Wrapper includes functions such as:
• Threading
• Timers
• Semaphores

• Mutexes
• Dynamic memory management without fragmentation
• Inter-process message passing
• Event/Message handling
• Finite state machine
• Serial device driver encapsulation
• USB device driver encapsulation
• TCP/UDP Socket encapsulation

SoftFrame is an extension to the debugging tools and Board Support Package or
Hardware Adaptation Layer provided by RTOS manufactures for example the Intel SA-
110, SA-1100, SA-1110, SA-120, SA-1500 evaluation boards, as SoftFrame presents
debugging tools that can handle complex multi threaded applications that are not specific
to only one environment.

The SoftFrame does not claim to solve all the issues involved in the design of embedded
systems – but it does claim to relieve the application programmers from some of the
distractions that take the focus away from the application through, for example:.

• dynamic memory management. SoftFrame provide a simple and effective
memory management module to replace C style (malloc/free) or C++ style
(new/delete) calls. Inside these calls are the smart, and adaptive memory and pool
management that does not result with memory fragmentation, yet fast and
efficient.

• standard libraries and stream libraries guarantee are provided that the code
works the same way on each platform.

• Debug mode function profiling, function entry/exit tracing and indented display
of threads and functions with timestamp would prove the value of presenting
information. Especially, while trying to find a problem that happens in a system
with a large number of threads and protocols running concurrently

These benefits, plus the ability to run across multiple platforms, makes SoftFrame a
product that is extremely complementary to makers of embedded development boards or
embedded products. SoftFrame speeds up development and eliminates the need for
porting the application from platform to platform by encapsulating the major functions of
an operation within a standardized API call system. It offers an ever increasing number of
platforms that the developer can change between combined with a fast and easy
application development infrastructure.

To address today’s demand for short range wireless applications, Clarinox has available
add-on options for Bluetooth, RFID rand WiFi for any of the supported platforms.

The Clarinox embedded software development framework enables the development of
standardised applications with reduced errors, reduced development time and reduced
complexity. So whether you wish to run on an Intel Centrino, an Intel XScale or an Intel
StrongARM, whether using embedded XP or Windows CE or an RTOS such as eCos;

you can develop one application on Windows and then run on either or both of these
platforms without a lengthy porting process and with better debugging tools.

About Clarinox Technologies

Clarinox Technologies specializes in embedded systems and short range wireless
technologies, in particular the design and implementation of efficient. Products include
SoftFrame, ClarinoxBlue, WiFi and RFID modules. Together these products provide a
“plug and play” type approach to constructing an embedded short range wireless product.

References
http://nicta.com.au/director/research/programs/ertos.cfm
http://ptolemy.eecs.berkeley.edu/~kienhuis/dacSlides/intro.pdf
http://www.ece.cmu.edu/~koopman/iccd96/iccd96.html

